Monte Carlo Study of the Critical Behavior of Random Bond Potts Models

T.Olson and A.P. Young
cond-mat/9903068

Abstract
We present results of Monte Carlo simulations of random bond Potts models in two dimensions, for different numbers of Potts states, q. We introduce a simple scheme which yields continuous self-dual distributions of the interactions. As expected, we find multifractal behavior of the correlation functions at the critical point and obtain estimates of the exponent $\eta_n$ for several moments, n, of the correlation functions, including typical (n -> 0), average (n=1) and others. In addition, for q=8, we find that there is only a single correlation length exponent describing the correlation length away from criticality. This is numerically very close to the pure Ising value of unity.

Paper: Link to Postscript

Peter Young's Home Page

Physics Home Page