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Entangled states play an important role in quantum computing. The most-studied entangled

states are so-called Bell states which involve two qubits. They are named in honor of the physicist

who clarified the Einstein-Podolsky-Rosen (EPR) paradox, and whose inequalities demonstrated

that the description of nature provided by quantum mechanics is fundamentally different from the

classical description. The Bell states are defined by

|β00〉 =
1√
2
( |00〉+ |11〉 ) , (1a)

|β01〉 =
1√
2
( |01〉+ |10〉 ) , (1b)

|β10〉 =
1√
2
( |00〉 − |11〉 ) , (1c)

|β11〉 =
1√
2
( |01〉 − |10〉 ) . (1d)

These four equations can be combined as follows:

|βxy〉 =
1√
2
( |0y〉+ (−1)x|1y〉 ) , (2)

where y is the complement of y, i.e. y = 1− y.
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FIG. 1: Circuit to create the Bell states defined by Eqs. (1). In the CNOT gate the upper qubit |x〉 is the
control qubit and the lower qubit |y〉 is the target qubit.

The Bell states are clearly entangled. They can be created out of two (unentangled) qubits

in computational basis states |xy〉 by the circuit shown in Fig. 1. To see this note that after the

Hadamard the state is

|xy〉 → 1√
2
( |0y〉+ (−1)x|1y〉 ) . (3)
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The effect of the CNOT gate is to flip y in the second term (since x = 1 there) and so we get

Eq. (2)
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FIG. 2: Circuit for Bell measurements. This will be used later in the course when we discuss teleportation.

The circuit in Fig. 1 converts the computational basis to the Bell basis. The reverse of this

circuit can be used to convert the Bell basis back to the computational basis as shown in Fig. 2.

The measured values of x and y tell us which Bell state we started with. This is called a Bell

Measurement. To see that this works note that after the CNOT gate the state of the two qubits

in Fig. 2 is1

1√
2
[ |0y〉+ (−1)x|1y〉 ] , (4)

which is separable and so can be written as

1√
2
[ |0〉+ (−1)x|1〉 ]⊗ |y〉. (5)

Recall that the left-hand qubit is the upper (control) qubit in Fig. 2 and the right hand qubit is

the lower (target) qubit. Acting with the Hadamard has the effect

H
1√
2
[ |0〉+ (−1)x|1〉 ] = |x〉 , (6)

so the final state in Fig. 2 is |xy〉 as desired.
Note that the Bell states |βxy〉 provide a basis for two qubits, since they are normalized, mutually

orthogonal and linearly independent. Consequently, if the state inputted into the Bell measurement

circuit in Fig. 2 is not a single Bell state, but rather a linear combination,

|ψin〉 =
1∑

x,y=0

αxy|βxy〉, (7)

with
∑

x,y
|αxy|2 = 1, then the probability that the measurements obtain a particular set of values

for x and y is |αxy|2.

1 The reason that y in the Bell state, Eq. (2), changes to y in the second term in Eq. (4) is because x = 1 and so
the y (target) qubit is flipped.


