1. Honeycomb lattice

Let the atomic spacing be a.

(It is not a Bravais lattice because, for example, starting at A, there is a vector \vec{e}_2, say, to B, but the vector $-\vec{e}_2$, starting at A, does not go to a lattice point.)

The Bravais lattice is the lattice formed by, say, all the A sites, this is a triangular lattice.

2. (a) This is a bcc lattice with a the side of the conventional cubic cell equal to 2.

2. (b) This is an Fcc lattice with a, the side of the conventional cubic cell equal to 2.

3.

O is at $(0,0,0)$.

A is at $(2,2,0)$.

B is at $(1,1,1)$.

\[
\cos(\vec{OB} \cdot \vec{BA}) = \frac{\vec{OB} \cdot \vec{BA}}{|\vec{OB}| \cdot |\vec{BA}|} = \frac{-1}{\sqrt{3} \cdot \sqrt{3}} = \frac{-1}{3} = -0.333
\]

\[\theta \approx 109.47^\circ \]

\[
\vec{OB} = \cos\left(-\frac{1}{3}\right) = 109.47^\circ
\]
Reciprocal lattice basis vectors \(\vec{b}_i = \frac{\vec{a}_i^* \times \vec{a}_j^*}{\vec{a}_i^* \cdot \vec{a}_j^*} \) etc.

For bcc, \(\vec{a}_1 = \frac{a}{2} (-1, 1, 1) \) \(\vec{a}_2 = \frac{a}{2} (1, -1, 1) \) \(\vec{a}_3 = \frac{a}{2} (1, 1, -1) \)

\(\vec{a}_2 \times \vec{a}_3 = \left(\frac{a}{2} \right)^2 \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \)

and \(\vec{a}_1 \cdot \vec{a}_2 \times \vec{a}_3 = \left(\frac{a}{2} \right)^3 \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \)

Hence \(\vec{b}_1 = \frac{2\pi}{a^3} \begin{bmatrix} \frac{a}{2} \\ 0 \\ 0 \end{bmatrix} = \frac{\pi}{a} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \)

This is a basis vector of the fcc lattice.

A similar calculation shows \(\vec{b}_2 \) and \(\vec{b}_3 \) are basis vectors of the fcc lattice.

Hence reciprocal lattice of the bcc is fcc.

Similarly for fcc, \(\vec{a}_1 = \frac{a}{2} (0, 1, 1) \) \(\vec{a}_2 = \frac{a}{2} (1, 0, 1) \) \(\vec{a}_3 = \frac{a}{2} (1, 1, 0) \)

Hence \(\vec{b}_1 = \frac{2\pi}{a^3} \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \frac{a}{4} \\ \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \frac{\pi}{a} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \)

which is a reciprocal lattice of the fcc lattice.

Similarly \(\vec{b}_2 \) and \(\vec{b}_3 \) are basis vectors of the fcc lattice.

Hence reciprocal lattice of fcc is bcc.

\(\Sigma \vec{V} = \vec{a}_1 \cdot \vec{a}_2 \times \vec{a}_3 \)

\(\Sigma V_{br} = \vec{b}_1 \cdot \vec{b}_2 \times \vec{b}_3 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot \vec{a}_2 \times \vec{a}_3} (\vec{b}_2 \times \vec{b}_3) \)

Now \((\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) - (\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c}) \)

\(\Sigma V_{br} = \frac{2\pi}{a^3} \left(\vec{a}_2 \cdot \vec{b}_2 \right) \left(\vec{a}_3 \cdot \vec{b}_3 \right) - \left(\vec{b}_2 \cdot \vec{b}_3 \right) \frac{\vec{a}_1 \cdot \vec{a}_2 \times \vec{a}_3}{\vec{a}_2 \cdot \vec{a}_3} \)

But \(\delta_{ij} b_j = 2\pi \delta_{ij} \) \(\Rightarrow V_{br} = \frac{(2\pi)^2}{\vec{a}_1 \cdot \vec{a}_2 \times \vec{a}_3} = \frac{4\pi^2}{V} \)
See Ashcroft & Mermin, p. 90
See Ashcroft & Mermin, p. 99-100

NaCl: Bravais lattice is Fcc, basis vectors
\(\mathbf{a}_1 = \frac{a}{2} (1, 0, 0) \), \(\mathbf{a}_2 = \frac{a}{2} (0, 1, 0) \), \(\mathbf{a}_3 = \frac{a}{2} (0, 0, 1) \)

Basis of 1 atom at \(\mathbf{0} \) and the other at \(\frac{a}{2} (1, 1, 1) \)

As shown in problem 4, the reciprocal lattice is bcc with reciprocal lattice basis vectors
\(\frac{2\pi}{a} (1, 1, 1) \), \(\frac{2\pi}{a} (1, -1, -1) \), \(\frac{2\pi}{a} (1, -1, 1) \)

Since the bcc is 2 interpenetrating simple cubic lattices, a reciprocal lattice vector is \(\frac{2\pi}{a} (m_1, m_2, m_3) \) where the \(m_i \) are either all even, or all odd, see Eq. 2(b).

Equivalently we can say
\[\mathbf{g} = \frac{2\pi}{a} (v_1, v_2, v_3) \]

where either all \(v_i \) are integer

Form factor of the unit cell is
\[\sum_{i} \mathbf{f}_i \cdot e^{i\mathbf{g} \cdot \mathbf{r}_i} = \mathbf{f}_1 \cdot \mathbf{f}_2 \cdot e^{i\mathbf{g} \cdot \mathbf{r}_1} \]

\[\mathbf{r} = \frac{a}{2} (1, 1, 1) \]

\[\mathbf{e}^2 = e \]

Now \(e^{i\mathbf{g} \cdot \mathbf{r}_i} = 1 \)

\[\mathbf{r} = \frac{a}{4} (1, 1, 1) \] if \(v_i \) is integer

\[\mathbf{r} = \frac{a}{4} (1, 1, 1) \] if \(v_i \) is integer + \(\frac{1}{2} \)

Hence form factor of cell is
\[\mathbf{f}_1 \cdot \mathbf{f}_2 \] if \(v_i \) is integer
\[\mathbf{f}_1 \cdot \mathbf{f}_2 \] if \(v_i \) is integer + \(\frac{1}{2} \)

If \(f_1 = f_2 \) there is no difference between the atoms (as far as the scattering experiment is concerned). We (effectively) have a sc lattice with lattice spacing \(a/2 \) so the reciprocal lattice is also sc with reciprocal lattice vectors
\[\frac{4\pi}{a} (m_1, m_2, m_3) \] where the \(m_i \) are integer.

Thus the spots with \(v_i \) = integer + \(\frac{1}{2} \) must vanish.
Scattering amplitude from a chain of atoms

\[F = \frac{\hbar}{\pi} e^{-\alpha(\Delta k)N} = \frac{1 - e^{-i\alpha(\Delta k)N}}{1 - e^{-i\alpha(\Delta k)}} \]

Scattering intensity \(\propto |F|^2 \)

\[= \frac{2 - 2\cos(\alpha N \Delta k)}{2 - 2\cos \alpha \Delta k} \]
\[= \frac{\sin^2 \left(\frac{1}{2} \alpha N \Delta k \right)}{\sin^2 \left(\frac{1}{2} \alpha \Delta k \right)} \]

\[\Delta k \to 0 \quad |F|^2 = N^2 \quad \text{i.e., very large if } N \text{ is large.} \]

Intensity zero at \(\Delta k = \frac{2\pi}{Na} \), so width of peak \(\propto \frac{1}{N} \).

\[\text{i.e., very sharp if } N \text{ is large.} \]
Bragg diffraction from a chain: \(N=10, \ x=\Delta k / 2\pi \)
Bragg diffraction from a chain: N=10, x=Delta k/2π