1. By looking for a solution in the form a series find the general solution of the differential equation
\[(x^2 + 1)y'' - 2xy' + 2y = 0.\]

2. Consider the array of charges shown below. Determine the form of the electrostatic potential at large distance \(r \).

3. Use the recursion relation discussed in class to determine \(P_3(x) \) and \(P_4(x) \) by first expressing them terms of Legendre polynomials of lower order (whose form you may assume).

4. (a) Use the generating function to determine \(P_n(0) \) for \(n = 0, 1, \cdots, 6 \).
 (b) Find \(P_n(0) \) for general \(n \).

 Note: You will need to distinguish between even and odd \(n \).

5. Show that
\[\int_{-1}^{1} x^m P_n(x) \, dx = 0 \quad \text{if} \quad n > m. \]

 Hint: Use the orthogonality property of the Legendre polynomials.

6. Obtain all the coefficients in a Legendre series for \(f(x) = x^4 \), i.e. writing
\[f(x) = \sum_{n=0}^{\infty} a_n P_n(x) \]
for \(-1 \leq x \leq 1 \), determine the coefficients \(a_n \).

7. Find the first three non-vanishing terms in the Legendre series for the function \(f(x) \) sketched below.