PHYSICS 116A
Homework 8 Solutions

1. Boas, problem 3.9–4. Given the matrix,

\[A = \begin{pmatrix} 0 & 2i & -1 \\ -i & 2 & 0 \\ 3 & 0 & 0 \end{pmatrix}, \]

find the transpose, the inverse, the complex conjugate and the transpose conjugate of \(A \). Verify that \(AA^{-1} = A^{-1}A = I \), where \(I \) is the identity matrix.

We shall evaluate \(A^{-1} \) by employing Eq. (6.13) in Ch. 3 of Boas. First we compute the determinant by expanding in cofactors about the third column:

\[
\det A = \begin{vmatrix} 0 & 2i & -1 \\ -i & 2 & 0 \\ 3 & 0 & 0 \end{vmatrix} = (-1) \begin{vmatrix} -i & 2 \\ 3 & 0 \end{vmatrix} = (-1)(-6) = 6.
\]

Next, we evaluate the matrix of cofactors and take the transpose:

\[
\text{adj } A = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 3 & i \\ -6 & 6i & -2 \end{pmatrix}.
\]

According to Eq. (6.13) in Ch. 3 of Boas the inverse of \(A \) is given by Eq. (1) divided by \(\det(A) \), so

\[
A^{-1} = \begin{pmatrix} 0 & \frac{1}{5} \\ 0 & \frac{i}{5} \\ -1 & -\frac{i}{5} \end{pmatrix}.
\]

It is straightforward to check by matrix multiplication that

\[
\begin{pmatrix} 0 & 2i & -1 \\ -i & 2 & 0 \\ 3 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & \frac{1}{5} \\ 0 & \frac{i}{5} \\ -1 & -\frac{i}{5} \end{pmatrix} = \begin{pmatrix} 0 & \frac{i}{5} \\ -i & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

The transpose, complex conjugate and the transpose conjugate* can be written down by inspection:

\[
A^T = \begin{pmatrix} 0 & -i & 3 \\ 2i & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad A^* = \begin{pmatrix} 0 & -2i & -1 \\ i & 2 & 0 \\ 3 & 0 & 0 \end{pmatrix}, \quad A^\dagger = \begin{pmatrix} 0 & i & 3 \\ -2i & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix}.
\]

*The transpose conjugate is more often referred to as the hermitian conjugate or the adjoint.
These have been obtained by noting that \(A^T \) is obtained by A by interchanging the rows and columns, \(A^* \) is obtained from \(A \) by complex conjugating the matrix elements, and the definition of the hermitian conjugate is \(A^\dagger = (A^*)^T \).

Alternative method: One can also evaluate \(A^{-1} \) by employing Gauss Jordan elimination, which is described in the class handout http://young.physics.ucsc.edu/116A/gauss_jordan.pdf.

\[
A = \begin{pmatrix}
0 & 2i & -1 \\
-i & 2 & 0 \\
3 & 0 & 0
\end{pmatrix}, \quad I = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

First we interchange \(R_1 \leftrightarrow R_3 \). Then we rescale the new row 1, \(R_1 \rightarrow \frac{1}{3} R_1 \) to obtain

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 2i & -1 \\
-i & 2 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & 0 & \frac{1}{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\]

Next, we perform the elementary row operations, \(R_3 \rightarrow R_3 + iR_1 \) and \(R_2 \rightarrow -\frac{1}{2}iR_2 \) to obtain:

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & \frac{1}{2}i \\
0 & 2 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & 0 & \frac{1}{3} \\
-\frac{1}{2}i & 0 & 0 \\
0 & 1 & \frac{1}{3}i
\end{pmatrix}
\]

Next, we perform the elementary row operations, \(R_3 \rightarrow R_3 - 2R_1 \) to obtain:

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & \frac{1}{2}i \\
0 & 0 & -i
\end{pmatrix}, \quad \begin{pmatrix}
0 & 0 & \frac{1}{3} \\
-\frac{1}{2}i & 0 & 0 \\
i & 1 & \frac{1}{3}i
\end{pmatrix}
\]

Finally, we perform the elementary row operations, \(R_2 \rightarrow R_2 + \frac{1}{2}R_3 \), followed by \(R_3 \rightarrow iR_3 \) to obtain:

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad A^{-1} = \begin{pmatrix}
0 & 0 & \frac{1}{3} \\
0 & \frac{1}{2} & \frac{i}{6} \\
-1 & i & \frac{-1}{3}
\end{pmatrix}
\]

The final step produces the inverse, which is indicated above. Note that we have reproduced Eq. (2).

2. Boas, problem 3.9–5. Show that the product \(AA^T \) is a symmetric matrix.

Using Eq. (9.10) on p. 139 of Boas, \((AB)^T = B^T A^T\) for any two matrices \(A \) and \(B \). Hence,

\[
(AA^T)^T = (A^T)^T A^T = [AA^T],
\]

where we have used the fact\(^\dagger\) that \((A^T)^T = A\) for any matrix \(A \). Eq. (3) implies that \(AA^T \) is a symmetric matrix, since by definition a symmetric matrix is equal to its transpose [cf. the table at the top of p. 138 of Boas].

\(^\dagger\)The transpose of a matrix interchanges the rows and columns. Thus, if one performs the transpose operation twice, the original matrix is recovered.

(a) Show that if \(A \) and \(B \) are symmetric, then \(AB \) is not symmetric unless \(A \) and \(B \) commute.

If \(A \) and \(B \) are symmetric, then \(A = A^T \) and \(B = B^T \). We now examine
\[
(AB)^T = B^T A^T = BA,
\]
after using the fact that \(A \) and \(B \) are symmetric matrices. We conclude that \((AB)^T = AB \) if and only if \(AB = BA \). That is, \(AB \) is not symmetric unless \(A \) and \(B \) commute.

(b) Show that a product of orthogonal matrices is orthogonal.

Consider orthogonal matrices \(Q_1 \) and \(Q_2 \). By definition [cf. the table at the top of p. 138 of Boas], we have \(Q_1^{-1} = Q_1^T \) and \(Q_2^{-1} = Q_2^T \). We now compute
\[
(Q_1 Q_2)^{-1} = Q_2^{-1} Q_1^{-1} = Q_2^T Q_1^T = (Q_1 Q_2)^T,
\]
after using the fact that \(Q_1 \) and \(Q_2 \) are orthogonal. In deriving Eq. (4), we have used the following properties of the inverse and the transpose
\[
(AB)^{-1} = B^{-1} A^{-1}, \quad \text{and} \quad (AB)^T = B^T A^T,
\]
for any pair of matrices \(A \) and \(B \). Thus, we have shown that
\[
(Q_1 Q_2)^{-1} = (Q_1 Q_2)^T,
\]
which implies that \(Q_1 Q_2 \) is orthogonal.

(c) Show that if \(A \) and \(B \) are Hermitian, then \(AB \) is not Hermitian unless \(A \) and \(B \) commute.

If \(A \) and \(B \) are Hermitian, then \(A = A^\dagger \) and \(B = B^\dagger \). We now examine
\[
(AB)^\dagger = B^\dagger A^\dagger = BA,
\]
after using the fact that \(A \) and \(B \) are Hermitian matrices. In deriving Eq. (5), we have used the fact that:
\[
(AB)^\dagger = ((AB)^*)^T = (A^* B^*)^T = (B^*)^T (A^*)^T = B^\dagger A^\dagger.
\]
We conclude that \((AB)^\dagger = AB \) if and only if \(AB = BA \). That is, \(AB \) is not Hermitian unless \(A \) and \(B \) commute.

(d) Show that a product of unitary matrices is unitary.

Consider unitary matrices \(U_1 \) and \(U_2 \). By definition [cf. the table at the top of p. 138 of Boas], we have \(U_1^{-1} = U_1^\dagger \) and \(U_2^{-1} = U_2^\dagger \). We now compute
\[
(U_1 U_2)^{-1} = U_2^{-1} U_1^{-1} = U_2^\dagger U_1^\dagger = (U_1 U_2)^\dagger,
\]
after using the fact that \(U_1 \) and \(U_2 \) are unitary and employing the property of the Hermitian conjugation given in Eq. (6). Thus, we have shown that \((U_1 U_2)^{-1} = (U_1 U_2)^\dagger \), which implies that \(U_1 U_2 \) is orthogonal.
4. Boas, problem 3.10-5(a). Given two vectors,
\[\vec{A} = (3 + i, 1, 2 - i, -5i, i + 1) \quad \text{and} \quad \vec{B} = (2i, 4 - 3i, 1 + i, 3i, 1), \]
find the norms of \(\vec{A} \) and \(\vec{B} \) and the inner product of \(\vec{A} \) and \(\vec{B} \), and note that the Schwarz inequality is satisfied.

Using eq. (1.07) on p. 146 of Boas, the norms of \(\vec{A} \) and \(\vec{B} \) are given by:
\[
\|\vec{A}\| = (|3 + i|^2 + |1|^2 + |2 - i|^2 + |-5i|^2 + |i + 1|^2)^{1/2} = (10 + 1 + 5 + 25 + 2)^{1/2} = \sqrt{43},
\]
\[
\|\vec{B}\| = (|2i|^2 + |4 - 3i|^2 + |1 + i|^2 + |3i|^2 + 1)^{1/2} = (4 + 25 + 2 + 9 + 1)^{1/2} = \sqrt{41}.
\]

Using eq. (10.6) on p. 146 of Boas, the inner product of \(\vec{A} \) and \(\vec{B} \) is given by:
\[
\vec{A} \cdot \vec{B} = (3 - i)(2i) + (1)(4 - 3i) + (2 + i)(1 + i) + (5i)(3i) + (1 - i)(1)
= (2 + 6i) + (4 - 3i) + (1 + 3i) - 15 + (1 - i)
= -7 + 5i. \tag{7}
\]

The Schwarz inequality [see eq. (10.9) on p. 146 of Boas] is:
\[
|\vec{A} \cdot \vec{B}| \leq \|\vec{A}\| \|\vec{B}\|,
\]
where \(|\cdots|\) indicates the magnitude of the corresponding complex number. Using Eq. (7), it follows that
\[
|\vec{A} \cdot \vec{B}| = |-7 + 5i| = \sqrt{49 + 25} = \sqrt{74}.
\]
Thus, the Schwarz inequality is satisfied for this example since
\[
\sqrt{74} \leq \sqrt{43} \sqrt{41} = \sqrt{1763}.
\]

5. Boas, problem 3.11–9. Show that \(\det(C^{-1}MC) = \det M \). What is the product of \(\det(C^{-1}) \) and \(\det C \)? Thus, show that the product of the eigenvalues of \(M \) is equal to \(\det M \).

Eq. (6.6) on p. 118 of Boas states that \(\det(AB) = \det A \det B \) for any two matrices \(A \) and \(B \). It follows that
\[
\det(C^{-1})\det C = \det(C^{-1}C) = \det I = 1,
\]
where \(I \) is the identity matrix. Hence,\(^4\)
\[
\det(C^{-1}) = \frac{1}{\det C}.
\]

Using Eq. (6.6) of Boas again along with the result just obtained,
\[
\det(C^{-1}MC) = (\det(C^{-1} \det M \det C) = \frac{\det M \det C}{\det C} = \frac{\det M}{\det C}. \tag{8}
\]
\(^4\)By assumption, \(C^{-1} \) exists, in which case \(\det C \neq 0 \) and so it is permissible to divide by \(\det C \).
Finally, Boas asks you to show that the product of the eigenvalues of M is equal to $\det M$. What she is expecting you to do is to use eq. (11.11) on p. 150 of Boas, which states that

$$C^{-1}MC = D = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where D is a diagonal matrix whose diagonal elements are the eigenvalues of M, denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$ above. It follows that

$$\det(C^{-1}MC) = \det D = \lambda_1 \lambda_2 \cdots \lambda_n. \quad (10)$$

The results of Eqs. (8) and (10) then imply that

$$\det M = \lambda_1 \lambda_2 \cdots \lambda_n. \quad (11)$$

Note that this proof is not completely general, since not all matrices M are diagonalizable and, for these, the matrix of eigenvectors C does not have an inverse since two or more eigenvectors are equal, with the result that $\det(C) = 0$. However, one can show that Eq. (11) is also true for non-diagonalizable matrices.

6. Boas, problem 3.11–10. Show that $\text{Tr}(C^{-1}MC) = \text{Tr} M$. Thus, show that the sum of the eigenvalues of M is equal to $\text{Tr} M$.

Eq. (9.13) on p. 140 of Boas states that the trace of a product of matrices is not changed by permuting them in cyclic order. In particular, $\text{Tr}(ABC) = \text{Tr}(BCA) = \text{Tr}(CAB)$ for any three matrices A, B and C. It follows that

$$\text{Tr}(C^{-1}MC) = \text{Tr}(MCC^{-1}) = \text{Tr}(MI) = \text{Tr} M, \quad (12)$$

where I is the identity matrix.

Finally, Boas asks you to show that the sum of the eigenvalues of M is equal to $\text{Tr} M$. What she is expecting you to do is to use Eq. (9) to obtain

$$\text{Tr}(C^{-1}MC) = \text{Tr} D = \lambda_1 + \lambda_2 + \cdots + \lambda_n, \quad (13)$$

where D is a diagonal matrix whose diagonal elements are the eigenvalues of M, denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$ above. The results of Eqs. (12) and (13) then imply that

$$\text{Tr} M = \lambda_1 + \lambda_2 + \cdots + \lambda_n. \quad (14)$$

As in the previous question, this proof is not general, since not all matrices M are diagonalizable. However, one can show that Eq. (14) is also true for non-diagonalizable matrices.

7. Boas, problem 3.11–19. Find the eigenvalues and eigenvectors of

$$M = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 3 & 0 \\ 2 & 0 & 3 \end{pmatrix}.$$
To compute the eigenvalues, we evaluate the characteristic equation,

\[\det(M - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 & 2 \\ 2 & 3 - \lambda & 0 \\ 2 & 0 & 3 - \lambda \end{vmatrix} = 0. \]

Expanding in terms of the cofactors of the elements of the third row,

\[\begin{vmatrix} 1 - \lambda & 2 & 2 \\ 2 & 3 - \lambda & 0 \\ 2 & 0 & 3 - \lambda \end{vmatrix} = -4(3 - \lambda) + (3 - \lambda) [(1 - \lambda)(3 - \lambda) - 4] \]

\[= (3 - \lambda)(1 - \lambda)(3 - \lambda) - 8 \]

\[= (3 - \lambda)(\lambda^2 - 4\lambda - 5) \]

\[= -\lambda(3)(\lambda - 5)(\lambda + 1). \]

Hence, the characteristic equation possesses three roots: \(\lambda = -1, 3, \text{ and } 5. \)

To obtain the eigenvectors, we plug in the eigenvalues into the equation \(M \vec{v} = \lambda \vec{v} \). First, we consider the eigenvalue \(\lambda = 5 \).

\[\begin{pmatrix} 1 & 2 & 2 \\ 2 & 3 & 0 \\ 2 & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 5 \begin{pmatrix} x \\ y \\ z \end{pmatrix}. \]

Expanding out this matrix equation yields:

\[x + 2y + 2z = 5x, \]
\[2x + 3y = 5y, \]
\[2x + 3z = 5z. \]

Rewrite the above equations as a set of homogeneous equations,

\[-4x + 2y + 2z = 0, \]
\[2x - 2y = 0, \]
\[2x - 2z = 0. \]

The solution can be determined by inspection,

\[x = y = z. \]

Normalizing the eigenvector yields (up to an overall sign):

\[\vec{v}(\lambda=5) = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \]
which satisfies $M \vec{v} = \lambda \vec{v}$ with eigenvalue $\lambda = 5$.

Next, we consider the eigenvalue $\lambda = 3$.

\[
\begin{pmatrix}
1 & 2 & 2 \\
2 & 3 & 0 \\
2 & 0 & 3
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
= 3
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}.
\]

Expanding out this matrix equation yields:

\[
x + 2y + 2z = 3x,
\]
\[
2x + 3y = 3y,
\]
\[
2x + 3z = 3z.
\]

Rewrite the above equations as a set of homogeneous equations,

\[
-2x + 2y + 2z = 0,
\]
\[
2x = 0,
\]
\[
2x = 0.
\]

The solution can be determined by inspection,

\[
x = 0, \text{ and } y = -z.
\]

Normalizing the eigenvector yields (up to an overall sign):

\[
\vec{v}_{(\lambda=3)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix},
\]

which satisfies $M \vec{v} = \lambda \vec{v}$ with eigenvalue $\lambda = 3$.

Finally, we consider the eigenvalue $\lambda = -1$.

\[
\begin{pmatrix}
1 & 2 & 2 \\
2 & 3 & 0 \\
2 & 0 & 3
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
= -
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}.
\]

Expanding out this matrix equation yields:

\[
x + 2y + 2z = 5x,
\]
\[
2x + 3y = 5y,
\]
\[
2x + 3z = 5z.
\]

Rewrite the above equations as a set of homogeneous equations,

\[
2x + 2y + 2z = 0,
\]
\[
2x + 4y = 0,
\]
\[
2x + 4z = 0.
\]
After subtracting the last two equations, the solution can be determined by inspection,

\[y = z \quad \text{and} \quad x = -2y. \]

Normalizing the eigenvector yields (up to an overall sign):

\[\vec{v}_{(\lambda=-1)} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \]

which satisfies \(M \vec{v} = \lambda \vec{v} \) with eigenvalue \(\lambda = -1 \).

Note that the three eigenvectors form an orthonormal set. This is the expected behavior for a real symmetric (or complex hermitian) matrix.

8. Boas, problem 3.11–32. The matrix,

\[M = \begin{pmatrix} 6 & -2 \\ -2 & 3 \end{pmatrix}, \]

describes a deformation of the \((x, y)\) plane. Find the eigenvalues and eigenvectors of the transformation, the matrix \(C \) that diagonalizes \(M \) and specifies the rotation to new axes \((x', y')\) along the eigenvectors, and the matrix \(D \) that gives the deformation relative to the new axes. Describe the deformation relative to the new axes.

First, we compute the eigenvalues by solving the characteristic equation,

\[
\begin{vmatrix}
6 - \lambda & -2 \\
-2 & 3 - \lambda
\end{vmatrix} = (6 - \lambda)(3 - \lambda) - 4 = \lambda^2 - 9\lambda + 14 = (\lambda - 7)(\lambda - 2) = 0.
\]

Hence, the two eigenvalues are \(\lambda = 7 \) and \(\lambda = 2 \). Next, we work out the eigenvectors. Since \(M \) is a real symmetric matrix, we know that the eigenvectors will be orthogonal. By normalizing them to unity, the eigenvectors will then be orthonormal. First, we examine:

\[
\begin{pmatrix} 6 & -2 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2 \begin{pmatrix} x \\ y \end{pmatrix},
\]

which is equivalent to

\[
6x - 2y = 2x, \\
-2x + 3y = 2y.
\]

These equations yield one independent relation, \(y = 2x \). Hence, the normalized eigenvector is

\[
\begin{pmatrix} x \\ y \end{pmatrix}_{\lambda=2} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}.
\]

The second normalized eigenvector is orthogonal to the first one, and thus is given by

\[
\begin{pmatrix} x \\ y \end{pmatrix}_{\lambda=7} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \end{pmatrix}.
\]
One can check this by verifying that,
\[
\begin{pmatrix}
6 & -2 \\
-2 & 3
\end{pmatrix}
\begin{pmatrix}
2 \\
-1
\end{pmatrix}
= 7
\begin{pmatrix}
2 \\
-1
\end{pmatrix}.
\]

The columns of the diagonalizing matrix \(C\) are given by the two eigenvectors. Thus,
\[
C = \frac{1}{\sqrt{5}} \begin{pmatrix}
1 \\
2
\end{pmatrix}.
\]

We expect that \(C^{-1}MC = D\) is a diagonal matrix. Let’s check this. First, we note that the columns of \(C\) are orthonormal. This implies that \(C\) is an orthogonal matrix so that \(C^{-1} = C^T\). In particular, for \(C\) given above we have \(C^T = C\), in which case \(C^{-1} = C\). Hence,
\[
C^{-1}MC = \frac{1}{\sqrt{5}} \begin{pmatrix}
1 & 2 \\
2 & -1
\end{pmatrix}
\begin{pmatrix}
6 & -2 \\
-2 & 3
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
2 & -1
\end{pmatrix}
= \frac{1}{5}
\begin{pmatrix}
1 & 2 \\
2 & -1
\end{pmatrix}
\begin{pmatrix}
2 & 14 \\
4 & -7
\end{pmatrix}
= \begin{pmatrix}
2 \\
0
\end{pmatrix}.
\]

Note that the order of the eigenvectors appearing as columns in \(C\) determines the order of the eigenvalues appearing along the diagonal of
\[
D = \begin{pmatrix}
2 & 0 \\
0 & 7
\end{pmatrix}.
\]

The deformation described by \(D\) is a stretching of the vectors by a factor of 2 along the \(x'\) axis and by a factor of 7 along the \(y'\) axis [cf. eq. (11.19) on p. 152 of Boas].

9. Boas, problem 3.11–42. Verify that the matrix,
\[
H = \begin{pmatrix}
3 & 1 - i \\
1 + i & 2
\end{pmatrix},
\]

is Hermitian. Find its eigenvalues and eigenvectors, write a unitary matrix \(U\) that diagonalizes \(H\) by a similarity transformation, and show that \(U^{-1}HU\) is the diagonal matrix of eigenvalues.

A Hermitian matrix satisfies \(H^\dagger = H\), where \(H^\dagger \equiv H^{* \top}\) is the complex-conjugate transpose of \(H\). Since \((1 - i)^* = 1 + i\), it follows that \(H\) is Hermitian. We compute the eigenvalues by solving the characteristic equation,
\[
\begin{vmatrix}
3 - \lambda & 1 - i \\
1 + i & 2 - \lambda
\end{vmatrix} = (3 - \lambda)(2 - \lambda) - 2 = \lambda^2 - 5\lambda + 4 = (\lambda - 4)(\lambda - 1) = 0,
\]

which yields two roots: \(\lambda = 4\) and \(\lambda = 1\). Next, we work out the eigenvectors. Since \(M\) is an Hermitian matrix, we know that the eigenvectors are orthogonal.\(^5\) After normalizing them to

\(^5\)For two complex vectors \(v\) and \(w\), the inner product is defined by \(\langle v, w \rangle = \sum v_i^* w_i\), where \(v_i\) and \(w_i\) are the components of the vectors \(v\) and \(w\). Note the appearance of the complex conjugate, \(v_i^*\), in the expression for the inner product. Two complex vectors are then orthogonal if \(\langle v, w \rangle = 0\). See p. 146 of Boas for further details.
unity, the two eigenvectors are orthonormal. First, we examine:

\[
\begin{pmatrix}
3 & 1 - i \\
1 + i & 2
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
= 4
\begin{pmatrix}
x \\
y
\end{pmatrix},
\]

which yields

\[-x + (1 - i)y = 0, \quad (1 + i)x - 2y = 0.\]

These two equations are not independent, since if you multiply the first equation by \(-1 - i\), you obtain the second equation. It follows that \(x = (1 - i)y\). Normalizing the eigenvector to unity yields:

\[
\begin{pmatrix}
x \\
y
\end{pmatrix}_{\lambda=4}
= \frac{1}{\sqrt{3}}
\begin{pmatrix}
1 - i \\
1
\end{pmatrix}.
\]

The second normalized eigenvector is orthogonal to the first one (keeping in mind the footnotes at the bottom of this page), and thus is given by

\[
\begin{pmatrix}
x \\
y
\end{pmatrix}_{\lambda=1}
= \frac{1}{\sqrt{3}}
\begin{pmatrix}
-1 \\
1 + i
\end{pmatrix}.
\]

One can check this by verifying that,

\[
\begin{pmatrix}
3 & 1 - i \\
1 + i & 2
\end{pmatrix}
\begin{pmatrix}
-1 \\
1 + i
\end{pmatrix}
= \begin{pmatrix}
-1 \\
1 + i
\end{pmatrix}.
\]

The columns of the unitary diagonalizing matrix are given by the orthonormal eigenvectors. Hence,

\[
U = \frac{1}{\sqrt{3}}
\begin{pmatrix}
1 - i & -1 \\
1 & 1 + i
\end{pmatrix}.
\]

Finally, we check that \(U^{-1}HU\) is diagonal. Since \(U\) is unitary, \(U^{-1} = U^\dagger\). Hence

\[
U^{-1}HU
= \frac{1}{3}
\begin{pmatrix}
1 + i & 1 \\
-1 & 1 - i
\end{pmatrix}
\begin{pmatrix}
3 & 1 - i \\
1 - i & 2
\end{pmatrix}
\begin{pmatrix}
1 - i & -1 \\
1 & 1 + i
\end{pmatrix}
= \frac{1}{3}
\begin{pmatrix}
1 + i & 1 \\
-1 & 1 - i
\end{pmatrix}
\begin{pmatrix}
4(1 - i) & -1 \\
4 & 1 + i
\end{pmatrix}
= \begin{pmatrix}
4 & 0 \\
0 & 1
\end{pmatrix}.
\]

As expected, the diagonal elements are the eigenvalues of \(H\).

10. Boas, problem 3.11–58. Consider the matrix,

\[
M = \begin{pmatrix}
5 & -2 \\
-2 & 2
\end{pmatrix}.
\]

Evaluate \(f(M)\) where \(f(M)\) is a series comprised of powers of \(M\). In particular, compute \(M^4\), \(M^{10}\) and \(e^M\).

\footnote{The length of a complex vector \(v\) is given by \(\|v\| = (\sum v_i^* v_i)^{1/2}\). A complex vector \(v\) normalized to unity satisfies \(\|v\| = 1\).}
In Eq. (11.10) on p. 150 of Boas, the diagonalization of \(M \) is performed. The result is:

\[
C^{-1}MC = D, \quad \text{where} \quad C = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix}.
\]

Then for any function consisting of sums of powers of \(M \), we have

\[
f(M) = f(CDC^{-1}) = Cf(D)C^{-1} = C \text{ diag } (f(\lambda_1), f(\lambda_2), \ldots, f(\lambda_n)) C^{-1},
\]

where the \(\lambda_i \) are the eigenvalues of \(M \), and diag is a diagonal matrix, whose diagonal entries are given as the arguments. The second step above follows from the observation that

\[
(CDC^{-1})^n = CDC^{-1}CDC^{-1}CDC^{-1} \cdots CDC^{-1} = CD^nC^{-1},
\]

after noting that \(C^{-1}C = I \). Applying Eq. (16) to the matrix given in Eq. (15), we have

\[
f(M) = C \begin{pmatrix} f(1) & 0 \\ 0 & f(6) \end{pmatrix} C^{-1}
\]

\[
= \frac{1}{5} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} f(1) & 0 \\ 0 & f(6) \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} f(1) & 2f(1) \\ -2f(6) & f(6) \end{pmatrix}
\]

\[
= \frac{1}{5} \begin{pmatrix} f(1) + 4f(6) & 2f(1) - 2f(6) \\ 2f(1) - 2f(6) & 4f(1) + f(6) \end{pmatrix}.
\]

(17)

We apply Eq. (17) to three cases:

\[
M^4 = \frac{1}{5} \begin{pmatrix} 1^4 + 4 \cdot 6^4 & 2 \cdot 1^4 - 2 \cdot 6^4 \\ 2 \cdot 1^4 - 2 \cdot 6^4 & 4 \cdot 1^4 + 6^4 \end{pmatrix} = \begin{pmatrix} 1037 & -518 \\ -518 & 260 \end{pmatrix},
\]

\[
M^{10} = \frac{1}{5} \begin{pmatrix} 1^{10} + 4 \cdot 6^{10} & 2 \cdot 1^{10} - 2 \cdot 6^{10} \\ 2 \cdot 1^{10} - 2 \cdot 6^{10} & 4 \cdot 1^{10} + 6^{10} \end{pmatrix} = \begin{pmatrix} 48372941 & -24186470 \\ -24186470 & 12093236 \end{pmatrix},
\]

\[
e^M = \frac{1}{5} \begin{pmatrix} e^1 + 4e^6 & 2e^1 - 2e^6 \\ 2e^1 - 2e^6 & 4e^1 + e^6 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 + 4e^5 & 2(1 - e^5) \\ 2(1 - e^5) & 4 + e^5 \end{pmatrix}.
\]

11. Boas, problem 3.11–60. The Cayley-Hamilton theorem states that a matrix satisfies its own characteristic equation. Verify this theorem for the matrix

\[
M = \begin{pmatrix} 5 & -2 \\ -2 & 2 \end{pmatrix}.
\]

The characteristic equation of \(M \) is given in eq. (11.4) of Boas,

\[
\begin{vmatrix} 5 - \lambda & -2 \\ -2 & 2 - \lambda \end{vmatrix} = (5 - \lambda)(2 - \lambda) - 4 = \lambda^2 - 7\lambda + 6 = (\lambda - 6)(\lambda - 1) = 0.
\]
Thus, according to the Cayley-Hamilton theorem,

\[M^2 - 7M + 6I = 0, \]

where \(I \) is the 2 \(\times \) 2 identity matrix and \(0 \) is the 2 \(\times \) 2 zero matrix. To verify this, we evaluate:

\[
M^2 - 7M + 6I = \begin{pmatrix} 29 & -14 \\ -14 & 8 \end{pmatrix} - 7 \begin{pmatrix} 5 & -2 \\ -2 & 2 \end{pmatrix} + 6 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
= \begin{pmatrix} 29 - 35 + 6 & -14 + 14 \\ -14 + 14 & 8 - 14 + 6 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\]

Boas suggests an alternate way of verifying the Cayley-Hamilton theorem. First, Boas diagonalizes \(M \) [cf. eq. (11.10) on p. 150]. The result is:

\[C^{-1}MC = D, \quad \text{where} \quad C = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix}. \]

Then, using \(M = CDC^{-1} \), it follows that

\[M^2 - 7M + 6I = C(D^2 - 7D + 6I)C^{-1}, \tag{18} \]

Noting that the eigenvalues \(\lambda = 6 \) and \(\lambda = 1 \) satisfy the characteristic equation (which is how the eigenvalues are determined in the first place), it immediately follows that

\[D^2 - 7D + 6I = 0. \tag{19} \]

You can also verify this explicitly:

\[
D^2 - 7D + 6I = \begin{pmatrix} 1^2 - 7 \cdot 1 + 6 & 0 \\ 0 & 6^2 - 7 \cdot 6 + 6 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\]

Consequently, Eqs. (18) and (19) yield:

\[M^2 - 7M + 6I = 0, \]

as required by the Cayley-Hamilton theorem.

Note: Using the technique above suggested by Boas, it is straightforward to prove the Cayley-Hamilton theorem for any diagonalizable matrix \(M \).

If \(f(\lambda) \) is the characteristic polynomial, then it follows that \(f(\lambda) = 0 \) for any of the eigenvalues of \(M \), since this is how the eigenvalues are determined. Consider the diagonal matrix \(D \) with the eigenvalues on the diagonal. Then, noting that \(D^n \) has values \(\lambda_i^n \) on the \(i \)-th diagonal element and zero on all off-diagonal elements, we have

\[
f(D) = \begin{pmatrix} f(\lambda_1) & 0 & 0 & \cdots & 0 \\ 0 & f(\lambda_2) & 0 & \cdots & 0 \\ 0 & 0 & f(\lambda_3) & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & f(\lambda_n) \end{pmatrix} = 0. \tag{20}
\]
Next one writes $M = CDC^{-1}$ and notes that $M^k = (CDC^{-1})^k = CDC^{-1}(CDC^{-1}) \cdots (CDC^{-1}) = CD^kC^{-1}$, since the internal factors of $C^{-1}C$ cancel. Hence, because f is a polynomial, we have

$$f(M) = f(CDC^{-1}) = Cf(D)C^{-1} = 0$$

since $f(D) = 0$ as shown above. However, this proof is not applicable to a matrix that is not diagonalizable. Nonetheless, one can show that the theorem is valid even for a non-diagonalizable matrix.