1. Boas, 2.14–9. Evaluate \((-1)^i\) in \(x + iy\) form.

We write
\[(-1)^i = e^{i(\pi+2\pi n)} = e^{-\pi-2\pi n}, \]
which, rather surprisingly, is a set of real numbers. The principal value of \((-1)^i = e^{-\pi}\) corresponding to the choice of \(n = 0\) in the above equation.

2. Boas, 2.15–7. Write \(\arctan(i\sqrt{2})\) in \(x + iy\) form.

Start with
\[z = \tan w = \frac{\sin w}{\cos w} = \frac{1}{i} \left(\frac{e^{iw} - e^{-iw}}{e^{iw} + e^{-iw}} \right) = \frac{1}{i} \left(\frac{e^{2iw} - 1}{e^{2iw} + 1} \right). \]

Solving for \(e^{2iw}\),
\[iz = \frac{e^{2iw} - 1}{e^{2iw} + 1} \implies e^{2iw} = \frac{1 + iz}{1 - iz}. \]

Hence,
\[w = \arctan z = \frac{1}{2i} \ln \left(\frac{1 + iz}{1 - iz} \right). \]

Setting \(z = i\sqrt{2}\), we obtain:
\[\arctan(i\sqrt{2}) = \frac{1}{2i} \ln \left(\frac{1 - \sqrt{2}}{1 + \sqrt{2}} \right) = \frac{1}{2i} \ln \left[-(1 - \sqrt{2})^2 \right]. \]

after multiplying the numerator and denominator above by \(1 - \sqrt{2}\) and noticing that \((1 - \sqrt{2})(1 + \sqrt{2}) = 1 - 2 = -1\). We shall make use of the definition of the multi-valued complex logarithm
\[\ln z = \text{Ln}|z| + i \text{arg} z = \text{Ln}|z| + i(\text{Arg} z + 2\pi n), \quad n = 0, \pm 1, \pm 2, \ldots, \]
with \(z = -(1 - \sqrt{2})^2\). In particular, we have \(\text{Ln}|z| = 2\ln(\sqrt{2} - 1)\) and \(\text{Arg} z = \pi\). Hence, Eqs. (3) and (2) yield:
\[\arctan(i\sqrt{2}) = (n + \frac{1}{2}) \pi - i\text{Ln}(\sqrt{2} - 1), \quad n = 0, \pm 1, \pm 2, \ldots. \]

3. Boas, 2.16–11. Prove that
\[\cos \theta + \cos 3\theta + \cos 5\theta + \cdots + \cos(2n - 1)\theta = \frac{\sin 2n\theta}{2\sin \theta}, \quad (4) \]
\[\sin \theta + \sin 3\theta + \sin 5\theta + \cdots + \sin(2n - 1)\theta = \frac{\sin^2 n\theta}{\sin \theta}. \quad (5) \]

Consider the geometric series:
\[S = e^{i\theta} + e^{3i\theta} + e^{5i\theta} + \cdots + e^{(2n-1)i\theta}. \quad (6) \]
Using the results of eq. (1.4) on p. 2 of Boas,

\[a + ar + ar^2 + \cdots + ar^{N-1} = \frac{a(1 - r^N)}{1 - r}, \]

we identify \(a = e^{i\theta}, r = e^{2i\theta} \) and \(n = N \). Hence,

\[S \equiv e^{i\theta} + e^{3i\theta} + e^{5i\theta} + \cdots + e^{(2n-1)i\theta} = \frac{e^{i\theta}(1 - e^{2in\theta})}{1 - e^{2i\theta}}. \]

This result can be simplified by multiply both the numerator and denominator by \(-e^{-i\theta}\). The end result is:

\[S = \frac{e^{2in\theta} - 1}{e^{i\theta} - e^{-i\theta}} = \frac{e^{i\theta}(e^{in\theta} - e^{-in\theta})}{e^{i\theta} - e^{-i\theta}} = \frac{e^{i\theta} \sin n\theta}{\sin \theta}, \]

where we have used

\[\sin \theta \equiv \frac{e^{i\theta} - e^{-i\theta}}{2i} \]

to obtain the final result. In particular, using \(\text{Re}(e^{in\theta}) = \cos n\theta \) and \(\text{Im}(e^{in\theta}) = \sin n\theta \), it follows that:

\[\text{Re } S = \frac{\cos n\theta \sin n\theta}{\sin \theta} = \frac{\sin 2n\theta}{2 \sin \theta}, \]

\[\text{Im } S = \frac{\sin^2 n\theta}{\sin \theta}, \]

after employing the trigonometric identity \(\sin 2n\theta = 2 \sin n\theta \cos n\theta \). Equating the real and imaginary parts of Eq. (6), we conclude that

\[\text{Re } S = \cos \theta + \cos 3\theta + \cos 5\theta + \cdots + \cos(2n-1)\theta = \frac{\sin 2n\theta}{2 \sin \theta}, \]

\[\text{Im } S = \sin \theta + \sin 3\theta + \sin 5\theta + \cdots + \sin(2n-1)\theta = \frac{\sin^2 n\theta}{\sin \theta}, \]

which reproduces the results of Eqs. (4) and (5).

4. Boas Ch. 2, §17, Qu. 22. Show that \(\tanh^{-1} z = \frac{1}{2} \ln \left(\frac{1+z}{1-z} \right) \).

We write

\[z = \tanh w = \frac{e^w - e^{-w}}{e^w + e^{-w}} = \frac{e^{2w} - 1}{e^{2w} + 1}, \]

so

\[z \left(e^{2w} + 1 \right) = e^{2w} - 1, \]

which has solution

\[e^{2w} = \frac{1 + z}{1 - z}. \]

Taking the log gives

\[w \equiv \tanh^{-1} z = \frac{1}{2} \ln \left(\frac{1+z}{1-z} \right). \]
5. The series for the principal value of the complex-valued logarithm,

\[\ln(1 - z) = -\sum_{n=1}^{\infty} \frac{z^n}{n}, \]

(7)

converges for all \(|z| \leq 1, z \neq 1 \). In particular, consider the conditionally convergent series,

\[S \equiv \sum_{n=1}^{\infty} \frac{e^{in\theta}}{n}, \quad \text{where } 0 < \theta < 2\pi. \]

(8)

Using Eq. (7) with \(z = e^{i\theta} \), it follows that

\[S = -\ln(1 - e^{i\theta}). \]

(9)

The principal value of the complex logarithm is given by:

\[\ln(1 - e^{i\theta}) = \ln|1 - e^{i\theta}| + i\text{Arg}(1 - e^{i\theta}). \]

(10)

To evaluate this expression we write the complex number \(z = 1 - e^{i\theta} \) in polar form, i.e.

\[z = 1 - e^{i\theta} = Re^{i\Theta}, \]

so

\[S = -[\ln R + i\Theta], \quad (-\pi < \Theta \leq \pi). \]

(11)

A simple way to do this is:

\[1 - e^{i\theta} = Re^{i\Theta} = e^{i\theta/2} \left(e^{-i\theta/2} - e^{i\theta/2}\right) = -2ie^{i\theta/2} \sin(\theta/2) = 2e^{i(\theta-\pi)/2} \sin(\theta/2), \]

(12)

after using \(\sin(\theta/2) = \frac{1}{2i}(e^{i\theta/2} - e^{-i\theta/2}) \) and \(-i = e^{-i\pi/2}\). Since \(\sin(\theta/2) > 0 \) for \(0 < \theta < 2\pi \), it follows that

\[R \equiv |1 - e^{i\theta}| = 2 \sin(\theta/2), \]

and we can then identify the principal value of the argument of \(z \) as

\[\Theta \equiv \text{Arg}(1 - e^{i\theta}) = \frac{1}{2}(\theta - \pi). \]

(13)

Note that when \(0 < \theta < 2\pi \), it follows that \(\Theta \) lies between \(-\pi \) and \(\pi \), which is inside the range of the principal value of the argument function as defined in class. Hence, Eq. (11) simplifies to:

\[S = -\ln(1 - e^{i\theta}) = -\ln \left(2 \sin \frac{\theta}{2}\right) + \frac{1}{2}i(\pi - \theta), \quad \text{for } 0 < \theta < 2\pi. \]

(14)

(a) By taking the real part of Eq. (8), evaluate

\[\sum_{n=1}^{\infty} \frac{\cos n\theta}{n}, \quad \text{where } 0 < \theta < 2\pi, \]
as a function of θ. Check that your answer has the right limit for $\theta = \pi$.

Noting that $\cos n\theta = \text{Re} e^{in\theta}$, it follows from Eqs. (8) and (14) that

$$\sum_{n=1}^{\infty} \frac{\cos n\theta}{n} = \text{Re} S = -\ln \left(\frac{2 \sin \frac{\theta}{2}}{\theta}\right), \quad \text{for } 0 < \theta < 2\pi.$$ \hspace{1cm} (15)

We can check Eq. (15) in the special case of $\theta = \pi$. Using the results, $\sin(\pi/2) = 1$, $\cos n\pi = (-1)^n$ and $-(-1)^n = (-1)^{n+1}$, it follows that:

\[
\ln 2 = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots,
\]
a well-known result.

(b) By taking the imaginary part of Eq. (8), prove that

$$\sum_{n=1}^{\infty} \frac{\sin n\theta}{n} = \frac{1}{2}(\pi - \theta), \quad \text{where } 0 < \theta < 2\pi.$$ \hspace{1cm} (16)

Noting that $\sin n\theta = \text{Im} e^{in\theta}$, it follows from Eqs. (8) and (14) that

$$\sum_{n=1}^{\infty} \frac{\sin n\theta}{n} = \text{Im} S = \frac{1}{2}(\pi - \theta), \quad \text{for } 0 < \theta < 2\pi.$$ \hspace{1cm} (16)

Again, we can check the special case of $\theta = \pi$. Since $\sin n\pi = 0$, Eq. (16) reduces in this limit to the trivial equation $0 = 0$.

6. Evaluate the integral

$$I_n = \int_{0}^{\infty} t^n e^{-kt^2} \, dt,$$

for $k > 0$ and $n > -1$.

Let us define a new variable, $u = kt^2$ or equivalently $t = \sqrt{u/k}$. Then,

$$du = 2ktdt \quad \implies \quad dt = \frac{du}{2k} \left(\frac{k}{u}\right)^{1/2} = \frac{du}{2k^{1/2}u^{1/2}}.$$ \hspace{1cm} \hspace{1cm}

Hence,

$$I_n = \frac{1}{k^{n/2}} \int_{0}^{\infty} u^{n/2} e^{-u} \frac{du}{2k^{1/2}u^{1/2}} = \frac{1}{2k^{(n+1)/2}} \int_{0}^{\infty} u^{(n-1)/2} e^{-u} \, du$$

4
Using the definition of the Gamma function,

\[\Gamma(x) = \int_0^\infty t^{x-1}e^{-t} \, dt, \]

we identify \(x = \frac{1}{2}(n + 1) \). Thus,

\[I_n = \frac{1}{2k^{(n+1)/2}} \Gamma\left(\frac{n+1}{2}\right) \]

As a check, let us set \(k = 1 \) and \(n = 0 \). Then, we obtain \(I_0 = \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = \frac{1}{2} \sqrt{\pi} \) as expected. The factor of \(k^{- (n+1)/2} \) can be deduced using simple dimensional analysis. If \(t \) has dimensions of time, then \(k \) must have dimensions of \(t^{-2} \), since the argument of the exponential must be dimensionless. Since \(dt \) also has dimensions of time, the entire integral has dimensions of \(t^{n+1} \), which must be respected by the final result for \(I_n \). Indeed \(k^{- (n+1)/2} \) has dimensions of \(t^{n+1} \), and so the dimensions of our final result for \(I_n \) are consistent. In particular, it is possible to first carry out the computation with \(k = 1 \), and then determine the \(k \) dependence of \(I_n \) strictly on dimensional grounds!

7. Boas, Ch. 11 §3, Qu. 5. Simplify \(\Gamma\left(\frac{1}{2}\right)\Gamma(4)/\Gamma\left(\frac{9}{2}\right) \).

Using \(x \Gamma(x) = \Gamma(x + 1) \) repeatedly, one obtains \(\Gamma\left(\frac{9}{2}\right) = \frac{7}{2} \Gamma\left(\frac{7}{2}\right) = \frac{7}{2} \cdot \frac{5}{2} \Gamma\left(\frac{5}{2}\right) \), etc. until finally obtaining \(\Gamma\left(\frac{9}{2}\right) = \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right) \). Hence, using \(\Gamma(4) = 3! = 6 \), it follows that

\[\frac{\Gamma\left(\frac{1}{2}\right)\Gamma(4)}{\Gamma\left(\frac{9}{2}\right)} = \frac{2}{7} \cdot \frac{2}{5} \cdot \frac{2}{3} \cdot 2 \cdot 6 = \frac{32}{35}. \]

8. Boas, Ch. 11 §3, Qu. 13. Express as a \(\Gamma \) function

\[\int_0^1 x^2 \left(\ln \frac{1}{x} \right)^3 \, dx. \]

Introduce a new variable \(x = e^{-u} \). Then \(dx = -e^{-u}du \) and \(\ln(1/x) = \ln e^u = u \). Noting that \(x = 0 \implies u = \infty \) and \(x = 1 \implies u = 0 \), it follows that

\[\int_0^1 x^2 \left(\ln \frac{1}{x} \right)^3 \, dx = \int_0^\infty u^3 e^{-3u} \, du = \frac{1}{3^3} \int_0^\infty v^3 e^{-v} \, dv = \frac{\Gamma(4)}{81} = \frac{2}{27}. \]

In the second step above, I used the overall minus sign to interchange the lower and upper limits of integration. At the third step, I changed the integration variable once more to \(v = 3u \) (the limits of integration are unchanged). Finally, I used the definition of the Gamma function [eq. (3.1) on p. 538 of Boas] followed by \(\Gamma(4) = 3! = 6 \) to obtain the final result.

*The simplest way to see that the argument of any exponential must be dimensionless is to consider the power series expansion, \(e^z = 1 + z + z^2/2! + z^3/3! + \cdots \). Suppose \(z \) had dimensions of length, for example. Then \(e^z \) would be the sum of a dimensionless number plus a number with units of length plus a number with units of squared-length, and so on. But, one cannot consistently sum two quantities that possess different length dimensions. The only way to avoid this inconsistency is to conclude that \(z \) is dimensionless.
9. Boas, problem 11.5-3. Show that the binomial coefficient \(\binom{p}{n} \) can be written in terms of Gamma functions as:

\[
\binom{p}{n} = \frac{\Gamma(p+1)}{n!\Gamma(p-n+1)}.
\]

(17)

The binomial coefficient is defined in eq. (13.6) on p. 28 of Boas as:

\[
\binom{p}{n} = \frac{p(p-1)(p-2)\cdots(p-n+1)}{n!}.
\]

To prove that it can be written as in Eq. (17), we first multiply numerator and denominator by \(\Gamma(p-n+1) \),

\[
\binom{p}{n} = \frac{p(p-1)(p-2)\cdots(p-n+1)\Gamma(p-n+1)}{n!\Gamma(p-n+1)}.
\]

(18)

By repeatedly employing \(x\Gamma(x) = \Gamma(x+1) \), the numerator of Eq. (18) can be written as:

\[
p(p-1)(p-2)\cdots(p-n+3)(p-n+2)(p-n+1)\Gamma(p-n+1) \\
= p(p-1)(p-2)\cdots(p-n+3)(p-n+2)\Gamma(p-n+2) \\
= p(p-1)(p-2)\cdots(p-n+3)\Gamma(p-n+3) \\
= \cdots \\
= p(p-1)(p-2)\Gamma(p-2) = p(p-1)\Gamma(p-1) = p\Gamma(p) = \Gamma(p+1).
\]

Inserting this last result back into Eq. (18) yields

\[
\binom{p}{n} = \frac{\Gamma(p+1)}{n!\Gamma(p-n+1)}
\]

as requested.

10. Boas, Ch. 11 §5, Qu. 5, part (a).

Use eq. (5.4) on p. 541 of Boas to show that

\[
\Gamma\left(\frac{1}{2} - n\right) \Gamma\left(\frac{1}{2} + n\right) = (-1)^n \pi,
\]

(19)

assuming that \(n \) is an integer.\(^\dagger\)

We start from the reflection formula [eq. (5.4) on p. 541 of Boas]:

\[
\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin \pi p}.
\]

(20)

\(^\dagger\)Boas restricts \(n \) to be a positive integer. However, Eq. (19) holds for negative integers as well. In fact, noting that \((-1)^n = (-1)^{-n}\) for any integer \(n \), it follows that Eq. (19) is unmodified under the interchange of \(n \) and \(-n\). Note that for \(n = 0 \), Eq. (19) also yields a correct result, \([\Gamma(\frac{1}{2})]^2 = \pi \).
If we set \(p = \frac{1}{2} - n \), then
\[
1 - p = 1 - \left(\frac{1}{2} - n \right) = n + \frac{1}{2}.
\]

Inserting \(p = \frac{1}{2} - n \) into Eq. (20) yields:
\[
\Gamma \left(\frac{1}{2} - n \right) \Gamma \left(\frac{1}{2} + n \right) = \frac{\pi}{\sin \left[\pi \left(\frac{1}{2} - n \right) \right]}.
\tag{21}
\]

Finally, we make use of the trigonometric identity,
\[
\sin \left[\pi \left(\frac{1}{2} - n \right) \right] = \sin \left(\frac{1}{2} \pi - n \pi \right) = \sin \left(\frac{1}{2} \pi \right) \cos(n \pi) - \cos \left(\frac{1}{2} \pi \right) \sin(n \pi) = \cos(n \pi),
\]
after using \(\sin(\frac{1}{2} \pi) = 1 \) and \(\cos(\frac{1}{2} \pi) = 0 \). Using the fact that \(\cos(n \pi) = (-1)^n \) for any integer \(n \), it follows that
\[
\sin \left[\pi \left(\frac{1}{2} - n \right) \right] = (-1)^n, \quad \text{for any integer } n.
\]

Inserting this result back into Eq. (21) and using \((-1)^{-n} = (-1)^n \) for any integer \(n \), we obtain:
\[
\Gamma \left(\frac{1}{2} - n \right) \Gamma \left(\frac{1}{2} + n \right) = (-1)^n \pi, \quad \text{for any integer } n,
\]
which is the desired result.